#ifndef DEBUG
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,avx,avx2,abm,mmx,fma,popcnt")
#endif
#include <bits/stdc++.h>
#define int long long
using namespace std;
const int INF = 1e18;
// #ifdef DEBUG
// template <typename T>
// struct myvector : public vector<T> {
// using vector<T>::vector;
// const T& operator[](size_t index) const {
// return this->at(index);
// }
// T& operator[](size_t index) {
// return this->at(index);
// }
// };
// #define vector myvector
// #endif
vector<int> boss;
vector<pair<int, int>> val;
vector<bool> use;
vector<int> prev_cost;
int find(int a) {
if (boss[a] == a) return a;
return boss[a] = find(boss[a]);
}
void unite(int a, int b) {
a = find(a);
b = find(b);
if (a == b) return;
boss[b] = a;
val[a].first += val[b].first;
val[a].second += val[b].second;
val[a].first = min(INF, val[a].first);
val[a].second = min(INF, val[a].second);
use[a] = use[a] | use[b];
prev_cost[a] += prev_cost[b];
}
bool comp(int a, int b) {
if (a==INF) return false;
if (b==INF) return true;
if (a==0) return false;
if (b==0) return true;
return a<b;
}
void solve() {
int n, k;
cin >> n >> k;
string s; cin >> s;
// if (n > 10000)
// cout << s << "\n";
// vector<vector<int>>()
vector<vector<int>> contains(n);
vector<vector<int>> subsets;
for (int i=0; i<k; i++) {
subsets.push_back({});
int c; cin >> c;
for (int j=0; j<c; j++) {
int x; cin >> x;
x--;
contains[x].push_back(i);
subsets[i].push_back(x);
}
sort(subsets[i].begin(), subsets[i].end());
}
sort(subsets.begin(), subsets.end(), [](const vector<int>& a, const vector<int>& b) {
return a[0] < b[0];
});
boss.assign(2*k, 0);
val.assign(2*k, {0, 0});
use.assign(2*k, 0);
for (int i=0; i<k; i++) {
val[i].first=1;
}
for (int i=k; i<2*k; i++) {
val[i].second=1;
}
iota(boss.begin(), boss.end(), 0LL);
prev_cost.assign(2*k, 0LL);
// vector<bool> seen(n, 0);
int res = 0;
for (int i=0; i<n; i++) {
if (contains[i].size() == 2) {
int a = contains[i][0];
int b = contains[i][1];
res -= prev_cost[find(a)];
res -= prev_cost[find(a+k)];
// res -= max((int)seen[a], min({val[find(a)].first, val[find(a)].second}));
if (find(a) != find(b) && find(a) != find(b+k)) {
res -= prev_cost[find(b)];
res -= prev_cost[find(b+k)];
// res -= max((int)seen[b], min({val[find(b)].first, val[find(b)].second}));
}
if (s[i] == '0') {
unite(a, b+k);
unite(a+k, b);
} else {
unite(a, b);
unite(a+k, b+k);
}
if (s[i] == '0') {
use[find(a)] = true;
use[find(a+k)] = true;
}
// res += max(1LL, min({val[find(a)].first, val[find(a)].second}));
prev_cost[find(a)] = max((int)use[find(a)], min({val[find(a)].first, val[find(a)].second, val[find(a+k)].first, val[find(a+k)].second}, comp));
prev_cost[find(a+k)] = max((int)use[find(a+k)], min({val[find(a)].first, val[find(a)].second, val[find(a+k)].first, val[find(a+k)].second}, comp));
if (!use[find(a)]) prev_cost[find(a)]=0;
if (!use[find(a+k)]) prev_cost[find(a+k)]=0;
// if (val[find(a)].first>=INF && val[find(a)].second>=INF) prev_cost[find(a)] = 0;
// if (val[find(a)].first>=INF && val[find(a)].second==0) prev_cost[find(a)] = 0;
// if (val[find(a)].first==0 && val[find(a)].second>=INF) prev_cost[find(a)] = 0;
// if (val[find(a+k)].first>=INF && val[find(a+k)].second>=INF) prev_cost[find(a+k)] = 0;
// if (val[find(a+k)].first>=INF && val[find(a+k)].second==0) prev_cost[find(a+k)] = 0;
// if (val[find(a+k)].first==0 && val[find(a+k)].second>=INF) prev_cost[find(a+k)] = 0;
res += prev_cost[find(a)];
res += prev_cost[find(a+k)];
// if ((s[i] == '0' && find(a) != find(b)) || (s[i] == '1' && s[i] == '0')) {
// // res += max(1LL, min({val[find(b)].first, val[find(b)].second}));
// prev_cost[find(b)] = max(1LL, min({val[find(b)].first, val[find(b)].second, val[find(b+k)].first, val[find(b+k)].second}, comp));
// res += prev_cost[find(b)];
// }
// seen[a] = true;
// seen[b] = true;
} else if (contains[i].size() == 1) {
int a = contains[i][0];
// res -= max((int)seen[a], min({val[find(a)].first, val[find(a)].second}));
res -= prev_cost[find(a)];
res -= prev_cost[find(a+k)];
if (s[i] == '1') {
val[find(a)].first = INF;
val[find(a+k)].second = INF;
} else {
val[find(a)].second = INF;
val[find(a+k)].first = INF;
}
if (s[i] == '0') {
use[find(a)] = true;
use[find(a+k)] = true;
}
// res += max(1LL, min({val[find(a)].first, val[find(a)].second}));
// seen[a] = true;
prev_cost[find(a)] = max((int)use[find(a)], min({val[find(a)].first, val[find(a)].second, val[find(a+k)].first, val[find(a+k)].second}, comp));
prev_cost[find(a+k)] = max((int)use[find(a+k)], min({val[find(a)].first, val[find(a)].second, val[find(a+k)].first, val[find(a+k)].second}, comp));
if (!use[find(a)]) prev_cost[find(a)]=0;
if (!use[find(a+k)]) prev_cost[find(a+k)]=0;
// if (val[find(a)].first>=INF && val[find(a)].second>=INF) prev_cost[find(a)] = 0;
// if (val[find(a)].first>=INF && val[find(a)].second==0) prev_cost[find(a)] = 0;
// if (val[find(a)].first==0 && val[find(a)].second>=INF) prev_cost[find(a)] = 0;
// if (val[find(a+k)].first>=INF && val[find(a+k)].second>=INF) prev_cost[find(a+k)] = 0;
// if (val[find(a+k)].first>=INF && val[find(a+k)].second==0) prev_cost[find(a+k)] = 0;
// if (val[find(a+k)].first==0 && val[find(a+k)].second>=INF) prev_cost[find(a+k)] = 0;
res += prev_cost[find(a)];
res += prev_cost[find(a+k)];
}
cout << res/2 << "\n";
}
}
signed main() {
ios_base::sync_with_stdio(false);
cin.tie(0);
try {
solve();
} catch (const out_of_range& e) {
cerr << "ERROR!" << "\n";
while (true) {};
}
}
1661C - Water the Trees | 1459A - Red-Blue Shuffle |
1661B - Getting Zero | 1661A - Array Balancing |
1649B - Game of Ball Passing | 572A - Arrays |
1455A - Strange Functions | 1566B - MIN-MEX Cut |
678C - Joty and Chocolate | 1352E - Special Elements |
1520E - Arranging The Sheep | 1157E - Minimum Array |
1661D - Progressions Covering | 262A - Roma and Lucky Numbers |
1634B - Fortune Telling | 1358A - Park Lighting |
253C - Text Editor | 365B - The Fibonacci Segment |
75A - Life Without Zeros | 1519A - Red and Blue Beans |
466A - Cheap Travel | 659E - New Reform |
1385B - Restore the Permutation by Merger | 706A - Beru-taxi |
686A - Free Ice Cream | 1358D - The Best Vacation |
1620B - Triangles on a Rectangle | 999C - Alphabetic Removals |
1634C - OKEA | 1368C - Even Picture |